ELM FieldSight: The Controller of Microgrid Systems
energycioinsights

ELM FieldSight: The Controller of Microgrid Systems

Follow ELM FieldSight on :

Rising investments in renewable energy brought forth an upsurge in privately owned localized power grids or microgrids that can disconnect from the traditional grid to operate autonomously. This trend saw consumers of the utility sector evolving from a passive, disengaged role to a more proactive role. The changing horizon requires the prosumers (i.e., producer and consumer) and prosumagers (i.e., producing, consuming, and managing their energy) to monitor and control different components of their microgrid system. However, integrating industry-leading utility components into a microgrid system has always been a problem. “As we were getting into distributed energy solutions, we realized there was a huge gap in the market for an agnostic solution approach to control the microgrid system,” says Aron Bowman, COO, ELM FieldSight.

Starting as an environmental risk transfer business supporting compliance issues for the utility industry, ELM has long been working in the utility grid landscape. Lee Graves, CEO, ELM FieldSight, says, “Our primary focus right now is offering control to behind the meter microgrids that sit on the customer’s side of the utility meter.” The MicroGridSite Controller, the flagship product of ELM, is developed using Dell Edge IoT Gateway, in concert with sophisticated backend architecture and communication interfaces, for intelligent asset monitoring and control. The controller leverages edge-computing technology to make decisions autonomously on how to manage power sources and myriad of other tasks like switching between solar to battery storage, regenerate power to the grid, and a combination of those, based on preset criteria. Also, the edge technology used in the controller can control not just different types of hardware that harvests renewable energy sources but also equipment made by different manufacturers. “We have built a platform-agnostic solution for the MicroGrid Site Controller that can control any power generation equipment and make it all work together,” says Bowman.

Apart from the edge component, the controller uses a cloud computing component to process all the consumer data to provide text, email, or alarm notifications to customers through secure web portals, Android, and iOS devices.


We have built a platform-agnostic solution for the MicroGrid Site Controller that can control any power generation equipment and make it all work together


Jason Petermeier, CTO, ELM FieldSight says, “We store consumer information in the cloud and bring that information to the customer’s fingertips.” ELM does not just inform consumers about any potential issue; they have a quick response team that immediately identifies the issue and works with the energy equipment manufacturers to resolve the situation. One of ELM’s recent successful implementations was at a movie theater in the Virgin Islands. Previously the movie theater incurred revenue loss due to unexpected power outages during movie screenings. Using ELM’s MicroGrid Site Controller, the theater was able to operate off the grid by utilizing a microgrid system to keep their power up and reduce outages to almost zero, ensuring zero-disruption of the business.

MicroGrid Site Controller was crafted considering the needs of the energy and utility sector and consumers like movie theaters, factories, and apartment buildings. Petermeier says, “Before offering the solution, we first try to understand from a consumer perspective and an energy standpoint what the challenges are and how it affects either their business or their lives.”

With clients across the United States, Central and South America, the Virgin Islands, the Bahamas, and Canada, ELM banks on its long history and expertise in the energy and utility sector for rapid deployment of its solution. Furthermore, increased acceptance rate from a renewable energy standpoint and newer innovations have created the ground for market and technology growth to coincide for ELM. Currently, the company is working with its utility customers to educate them about the solution and how it can help them bridge the gap between traditional energy utility providers and their behind the meter customers renewable energy generation.

ELM FieldSight News

From 'squishy batteries' to pre-packaged systems - how the times are changing

ELM FieldSight has partnered with Ideal Power on a number of microgrid and related projects, designing and supplying the control system that makes the system tick, balancing the different distributed energy sources plugged into it. Vice president of operations Jason Petermeier spoke to Andy Colthorpe.

We got introduced to Ideal Power about two-and-a-half years ago. The first project that we got involved with was in northern California where there is a customer at the very end of the grid. His utility power frequently came on and off. He was looking to supplement that with some backup, with regards to solar and batteries. He commissioned us and Ideal to design and install a system that would utilise utility power – and any solar he was able to produce we could apply to the load or put back to the utility power. The battery bank topped off from the solar. Any time the grid went away we would switch it to power from the batteries, we would monitor the batteries until they got below a certain charge level and you also had a startup generator onsite.

Until fairly recently, it was common for microgrids to perhaps use lead acid and/or diesel, but lithium- ion has obviously changed the game. We’ve done three different types of battery with Ideal: Aqueon saltwater batteries, some advanced lead acid and also lithium and from my perspective the lithium-ion has really changed the game. Because it puts a lot more power in a smaller footprint and at a cheaper price for the customers so it really makes a return on investment much more achievable because prices have come down considerably over the last three to five years as that technology has evolved.

What we have found is that lithium-ion batteries have been a lot more stable and easy to monitor so when we charge and discharge them they’re much more predictable. From a controls perspective that has been much easier for us. Some of the other battery systems that we’ve worked with, that we call ‘squishy’ batteries, we see their voltages drop and increase much more rapidly whatever discharges are applied to it. With the lithium-ions we don’t tend to see that.

The more predictable everything can be in a system, the much easier it is to control. So the control algorithms behind all of this become much more simplified.

As well as Li-ion and lead acid, ELM and Ideal Power have worked together with Aquion's 'saltwater electrolyte' batteries. Image: Aquion.

We see a wide range of project opportunities in the market today and in the future. Our projects with Ideal Power have ranged from: a vineyard, a movie theatre and high-end residential, as well as industrial companies that just look for a battery backup and solar option to supplement their utility power.

There are a lot of different paths microgrids are taking – there’s the community aspect, where a community comes together wanting to supplement their utility power. Or there are remote communities – in Africa, Central America – that have no power, that are running off diesel generators and now looking to bring a microgrid-type system to their community. You’ve also got high-end businesses looking to reduce their costs as well as improve their energy backup capabilities, for power outages. The niche marketplace that our company and I think Ideal has found a niche in as well is the high-end residential and small industrial business.

While costs have come down significantly, they are still not quite affordable to the average person. What we’ve found, however, is that costs have come down enough for high-end residential houses (perhaps 10-15,000 square foot in size) where the owners aren’t necessarily looking for return on investment but are more interested in energy independence and creating a green footprint.

So that’s been our primary focus in the last 12 months, targeting that industry – with the goal that as the technology matures and costs come down, we can apply what we’ve learned from high-end projects. In the next 12-36 months it will only continue to get more affordable and we’ll have learned so much by that time that it will be a lot more pre-packaged systems that actually could be deployed for more average homes at that time.

We see the growth of standardisation and ‘pre-packaged systems’ as an important driver for cost reduction. Over the last two years, everything that’s been done has been kind of an engineering project. Everybody kind of hand-picked their components, had to design their architecture from scratch and then installed it. Then it takes two to three months to get everything working and talking together.

We’ve learned enough in the last few years that people have started to pre-package complete systems with inverters, batteries, switchgear and then you tie that in with the generator and you drop-ship pretty much a complete system to a site where you’re then just making external connections rather than wiring the entire system onsite. We see that industry growing and going in that direction and as that enables other cost reductions, installation costs will come down while installation and commissioning times will also come down.